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Abstract
Energy dispersive synchrotron x-ray diffraction is carried out to measure
differential lattice strains in polycrystalline Fe2SiO4 (fayalite) and MgO
samples using a multi-element solid state detector during high-pressure
deformation. The theory of elastic modelling with Reuss (iso-stress) and
Voigt (iso-strain) bounds is used to evaluate the aggregate stress and weight
parameter, α (0 � α � 1), of the two bounds. Results under the elastic
assumption quantitatively demonstrate that a highly stressed sample in high-
pressure experiments reasonably approximates to an iso-stress state. However,
when the sample is plastically deformed, the Reuss and Voigt bounds are no
longer valid (α becomes beyond 1). Instead, if plastic slip systems of the sample
are known (e.g. in the case of MgO), the aggregate property can be modelled
using a visco-plastic self-consistent theory.

1. Introduction

In situ x-ray diffraction plays a central role in modern high-pressure deformation experiments
for deriving external stress applied to an aggregate sample in a high-pressure cell (Merkel et al
2002, Wang et al 2003, Chen et al 2004, Li et al 2004, Weidner et al 2004, Nishiyama et al
2005). In a traditional high-pressure deformation experiment, the sample stress and strain are
determined by measuring the force and the displacement of a piston that extends from the
sample to outside of the high-pressure cell (Tingle et al 1993). Exploiting synchrotron x-
rays makes the stress and strain measurements possible without the piston in a conventional
deformation apparatus (i.e. Paterson Press), and therefore significantly advances the maximum
pressure range for deformation experiments.

Rheology at high pressures is a critical property of minerals in governing the process of
mantle dynamics. For understanding the process of mantle convection, the origin of deep
earthquakes, and the cause of seismic anisotropy, knowledge of the rheological properties of
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minerals at mantle pressures is essential (Karato and Wu 1993). Developments of in situ x-ray
diffraction at synchrotron facilities have greatly advanced the pressure range for deformation
experiments (Weidner et al 1998, Wang et al 2003). Whereas many plastic behaviours
(e.g. texture, active slip system) of minerals can be investigated without direct strain/stress
measurements, deriving flow laws (the most fundamental rheological property) requires
quantifying the strain and stress applied to the sample at high pressures. In the deformation
experiments in conjunction with high penetration power synchrotron x-rays, the sample strain
can be measured through x-ray radiograph imaging and the sample stress can be derived
by measuring the variation in lattice strain of a polycrystalline sample as a function of the
orientation with respect to the differential stress field (Chen et al 2004, Li et al 2004, Nishiyama
et al 2005). The orientation dependence of the lattice strain can be measured through either two-
dimensional x-ray diffraction using a monochromatic beam or multiple energy-dispersive x-ray
diffractions using a white beam. However, the x-ray diffraction actually infers the elastic lattice
strains of the particular population of grains orientated along the diffraction vector. To derive
the stress externally applied to the bulk aggregate sample, one needs to model the stress/strain
propagation through the grain-to-grain contact in the bulk sample. A conventional method of
modelling is to use elastic Reuss and Voigt bounds (Singh 1993, Funamori et al 1994, Uchida
et al 1996, Singh et al 1998, Chen et al 2004). The Reuss bound describes an extreme condition
(iso-stress) under which all the grains in the bulk sample experience identical stress when forces
are applied to the sample (Reuss 1929), while the Voigt bound describes another extreme, that
all the grains experience the same strain when the bulk sample is deformed under stress (Voigt
1928). An intermediate condition is then described by combining the bounds with a weight
parameter α (0 � α � 1; α = 1 and 0 represent the Reuss and Voigt conditions respectively).

Modelling the stress field under this principle has been commonly adopted to derive the
applied stress, strength, elastic anisotropy, and even elastic constants of materials under high
pressures in a diamond anvil cell (DAC) (Singh 1993, Mao et al 1998, Singh et al 1998, Kavner
and Duffy 2001, Merkel et al 2002, Kavner 2003, Shieh et al 2004) or a multi-anvil press
(MAP) (Wang et al 2003, Chen et al 2004, Li et al 2004, Weidner et al 2004, Nishiyama et al
2005). In recent DAC studies, (Kavner and Duffy 2001, Kavner 2003) realized that the elastic
anisotropy of a ringwoodite sample derived from the above method is significantly lower than
that measured through the Brillouin scattering technique (Sinogeikin et al 2003). An x-ray
diffraction study on MgO by Merkel et al (2002) also indicates a low elastic anisotropy with
respect to the result from Brillouin scattering (Sinogeikin and Bass 1999) in the pressure range
6–20 GPa. These discrepancies are interpreted as a result of stress redistribution due to plastic
flow in the sample (Weidner et al 2004).

In this paper, we report the evolution of the weight parameter α of an Fe2SiO4 (fayalite)
sample during plastic flow/deformation at high pressures, measured in a MAP using x-ray
diffraction. The result indicates that once large plastic flow occurs, the elastic model using
Reuss and Voigt bounds cannot be applied to the system—the α value goes beyond the
boundary condition (0 � α � 1). On the other hand, experimental data obtained from an
MgO sample demonstrate that in the plastic regime a slip system governed visco-plastic self-
consistent model is more appropriate to describe the stress/strain propagation in an aggregate
sample.

2. Deriving the weight parameter α for Reuss and Voigt bounds

The deformation sample in a MAP is often considered under an approximate cylindrical stress
field (figure 1) with σ1 = σ2 �= σ3 and
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Figure 1. Geometric sketch of the relation between the x-ray diffraction vector and stress fields in a
multi-anvil high-pressure apparatus. θ : Bragg angle of the x-ray diffraction, ψ : the angle between
the diffraction vector and the principal stress (σ3) axis.

σi j =
(
σ1 0 0
0 σ1 0
0 0 σ3

)
=

(
σP 0 0
0 σP 0
0 0 σP

)
+

(−t/3 0 0
0 −t/3 0
0 0 2t/3

)
(1)

where σ1 and σ3 are radial and axial stress components, respectively; σp is the mean normal
stress (hydrostatic pressure); t is the differential stress. As each individual peak (hkl) in a given
diffraction pattern represents the elastic strain of a grain subpopulation which has the (hkl)
lattice orientated along the diffraction vector (a direction bisecting the angle between incident
and diffracted beams), the observed peak position (d-spacing) varies with the orientation of the
diffraction vector relative to the stress field applied to the sample (i.e. ψ angle in figure 1). The
relation between the measured lattice strain and the ψ angle can be described as (Singh et al
1998)

ε(hkl) = εP + 1
3 t (1 − 3 cos2 ψ)

{
α[2GR(hkl)]−1 + (1 − α)(2GV)

−1
}

(2)

where εP is strain component due to the hydrostatic pressure in the total stress; GR(hkl) is the
aggregate shear modulus calculated under the Reuss condition; GV is the shear modulus under
the Voigt condition. If we let εH and εV represent the lattice strain measured at ψ = π/2 and
ψ = 0, then

εH(hkl) = εP + 1
3 t

{
α[2GR(hkl)]−1 + (1 − α)(2GV)

−1
}

εV(hkl) = εP − 2
3 t

{
α[2GR(hkl)]−1 + (1 − α)(2GV)

−1
}

Therefore,

�ε(hkl) ≡ εH(hkl)− εV(hkl)

= tα[2GR(hkl)]−1 + t (1 − α)(2GV)
−1. (3)

The weight parameter α can then be derived by plotting the observed �ε(hkl) for each
diffraction peak (hkl) as a function of [2GR(hkl)]−1:

α = a

a + 2bGV
(4)

where a and b are the slope and the intercept on the�ε(hkl) axis of the plot, respectively.
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Figure 2. Cell assemblies used for deformation experiments. (a) Octahedral pressure medium
with 8 mm edge-length for T-cup apparatus; (b) cubic pressure medium with 6 mm edge-length
for D-DIA apparatus. Dense corundum pistons are used on both ends of the sample for delivering
differential stress to the specimen.

(This figure is in colour only in the electronic version)

Expressions for [2GR(hkl)]−1 for different crystal systems can be found in Singh et al
(1998).
Cubic system:

[2GR(hkl)]−1 = [S11 − S12 − 3(S11 − S12 − 1/2S44)](h2k2 + k2l2 + l2h2)/(h2 + k2 + l2)2

(5)

Orthorhombic system:

[2GR(hkl)]−1 = 1/2{−(S12 + S13 + S23)+ l2
1(S23 − S11)+ l2

2(S13 − S22)+ l2
3(S12 − S33)

+ 3[l4
1 S11 + l4

2 S22 + l4
3 S33 + l2

1l2
2(2S12 + S66)+ l2

2l2
3(2S23 + S44)

+ l2
3l2

1(2S13 + S55)]} (6)

where l1 = hd(hkl)/a, l2 = kd(hkl)/b, and l3 = ld(hkl)/c; d(hkl): spacing between (hkl)
lattice planes. a, b, and c: the unit cell dimensions; Si j : elastic compliance.
Expressions for GV for different crystal systems can be found in Hearmon (1956).
Cubic system:

GV = 1/5(C11 − C12 + 3C44) (7)

Orthorhombic system:

GV = 1/15(C11 + C22 + C33 − C12 − C23 − C31 + 3C44 + 3C55 + 3C66) (8)

where Ci j are elastic stiffnesses.

3. The experiments and results

Experiments were conducted on polycrystalline Fe2SiO4 and MgO specimens to investigate
the evolution of the weight parameter during plastic flow. The experiment on the Fe2SiO4

sample was carried out using a 6–8 double-stage multi-anvil press, T-cup (a compact tea-cup
size multi-anvil apparatus, Vaughan et al 1998); x-ray diffractions were recorded during the
plastic flow induced by thermal relaxation in the sample at high pressure. The experiments on
the MgO sample were performed using a deformation DIA (D-DIA) apparatus (a cubic-type
multi-anvil press with add-on differential rams for driving top and bottom anvils independently,
Wang et al 2003); plastic deformation was introduced by advancing the differential rams
of the D-DIA at high pressure. The cell assemblies used in the experiments are shown in
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Table 1. Elastic constants of Fe2SiO4 used in the calculation (Graham et al 1988).

P = 0 GPa, T = 300 K ∂Cij /∂T (GPa K−1) ∂Cij /∂P

C11 265.85 −0.052 7.37
C22 160.25 −0.0524 5.29
C33 222.42 0.0378 5.2
C12 92.4 −0.027 6.08
C13 80.6 −0.015 5.7
C23 88.4 −0.012 3.5
C44 31.55 −0.0098 2.49
C55 46.74 −0.0096 1.35
C66 57.15 −0.0175 1.7

Table 2. Elastic constants of MgO used in the calculation (Spetzler 1970).

P = 0 GPa, T = 300 K ∂Cij /∂T (GPa K−1) ∂Cij /∂P

C11 297.4 −0.0613 8.68
C12 95.6 0.0044 1.38
C44 156.2 −0.0116 1.14

figure 2. Configurations of 8 mm edge-length octahedral pressure medium (MgO) versus 2 mm
second-stage anvil (cBN and WC) truncation and 6 mm edge-length cubic pressure medium
(mixture of boron and epoxy resin, 4:1) versus 4 mm DIA anvil truncation were used in the
T-cup and D-DIA experiments, respectively. The sample temperature was measured using a
W–3% Re/W–25% Re thermocouple (no correction was made for pressure dependence of the
EMF—electromotive force). The sample pressure was derived based on the sample elastic
constants and their pressure/temperature dependence (table 1 and table 2) from published
literatures (Spetzler 1970, Graham et al 1988). Energy dispersive x-ray diffraction patterns
were collected using a 13-element Ge solid state detector. A conic slit was used to collimate
the diffracted x-ray from the sample in such a way that 4 of the 13 elements of the detector
record diffraction patterns at 2θ angles of ∼±6.5◦ in the vertical and horizontal diffraction
planes simultaneously. An x-ray radiography system was used to record the change in sample
length. Details of the in situ stress and strain measurement system of the multi-anvil high-
pressure station at the X17B beamline of the National Synchrotron Light Source (NSLS) can
be found elsewhere (Chen et al 2004).

A powdered Fe2SiO4 sample (fayalite, orthorhombic structure, space group: Pbnm,
synthesized at Stony Brook University) with an average grain size of ∼1 µm was packed into
a cylindrical sample chamber of 1 mm diameter and about 3 mm in length.

The sample was first compressed at room temperature and then annealed at 973 K. After
being quenched to room temperature, the sample was further compressed. Large differential
stress was built up along the cylindrical axis during the compression because of the hard pistons
(no other soft buffering material in series) at each end of the sample. Upon heating to 773 K,
plastic flow (shortening) of the sample under this differential stress occurred. No shortening
was observed in the hard pistons. X-ray diffraction patterns from the sample were recorded
during the plastic flow. Figure 3 shows two diffraction patterns recorded simultaneously in
horizontal and vertical diffraction planes, ψ = 90◦ and θ (2θ = 6.5◦). The value of εV(hkl)
(ψ = 0) is then derived using (Chen et al 2004)

εV(hkl) = εψ=θ (hkl)− εH(hkl) sin2 θ

cos2 θ
. (9)
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Figure 3. Diffraction patterns of the Fe2SiO4 sample at 4.5 GPa and 773 K, collected
simultaneously on the detector allocated in the vertical and horizontal diffraction planes (2θ =
6.5◦). Differential stress applied to the sample (figure 1) results in the relative shift of diffraction
peaks in the patterns collected at different ψ angles.
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Figure 4. Differential elastic lattice strain �ε(hkl) = εH(hkl) − εV(hkl) versus Reuss aggregate
shear modulus [2GR(hkl)]−1 of Fe2SiO4 at 4.5 GPa 773 K. Bars attached to symbols represent
experimental errors. The solid line is a linear fit of the experimental data, from which the weight
parameter α for Reuss and Voigt bounds is derived (see text).

Figure 4 shows a typical plot of �ε(hkl) versus [2GR(hkl)]−1 for deriving the weight
parameter α using equation (4). The derived weight parameter α and the differential stress
held by the specimen during the relaxation process are shown in figure 5 as a function of time
of heating.

For the two MgO experiments, the powdered MgO sample was sandwiched between
two single crystals (MgO{111} and MgO{100}) in the first run (as shown in figure 2, top
sample: MgO{111}, middle: MgO powder, bottom: MgO{100}), and loaded with a Ta rod
in series along the deformation axis in the second (as shown in figure 2, both the top and
middle samples are MgO powder, and the bottom is the Ta rod). The experiments were
conducted by compressing the sample at room temperature and then annealing the sample at
high pressure (the pressure was slightly different in the two experiments; see below). While
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Figure 5. Evolution of the differential stress in the Fe2SiO4 sample and the weight parameter α
for Reuss and Voigt bounds derived from x-ray diffraction during relaxation, as a function of time
of heating (clock started at initial compression). Bars attached to symbols represent experimental
errors. The shaded area indicates the elastic regime defined by Reuss and Voigt bounds.

maintaining the sample at high pressure and temperature, the top and bottom anvils of the
D-DIA press were advanced, independently of the four side-anvils, to deform the sample. The
sample length and diffraction pattern from the MgO powder were recorded.

In the first MgO experiment, both MgO{111} and MgO{100} single crystals exhibited
significant plastic shortening during the deformation, whereas the polycrystalline MgO
specimen showed no measurable plastic deformation. The elastic lattice strains �ε(200) and
�ε(111) in the polycrystalline sample derived from x-ray diffractions at 5.7 GPa are plotted in
figure 6 as a function of time. Shown in figure 6 is also the weight parameter α derived from
these elastic lattice strains.

In the second experiment, the MgO sample length was notably shortened during the
deformation. The elastic lattice strains �ε(200) and �ε(111) of the sample at 4.5 GPa, as
well as the derived weight parameter α, are plotted in figure 7 as a function of time.

4. Discussion

The weight parameter α measured during the plastic flow of relaxation in the Fe2SiO4

experiment indicates a near Reuss bound (α close to 1) stress propagation in the largely stressed
sample at the beginning (figure 5). However, as the plastic flow proceeds the weight parameter
α increases, reaching the boundary defined by Reuss bound (α = 1), and goes beyond the
Reuss bound. This demonstrates that when plastic yielding takes place the stress distribution
in the polycrystalline sample is no longer restrained by the elastic property of the material,
and therefore the boundary defined by the elastic model does not bound in the plastic process.
Deformation experiments on MgO specimens using the D-DIA, which generates plastic flow
by advancing differential rams at a constant temperature, also reveal a result that is consistent
with this conclusion. Lacking comprehensive understanding of slip systems in fayalite, the
following discussion on modelling the differential stress during plastic flow only focuses on
the case of MgO.
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Figure 6. Differential elastic lattice strains�ε(200) and�ε(111) of polycrystalline MgO (bottom)
and the derived weight parameter α for Reuss and Voigt bounds (top) at 5.7 GPa and 773 K when
no notable plastic deformation in the aggregate is observed. Estimated experimental uncertainties
are indicated by either the bars attached to symbols or the size of the symbols. The shaded area
indicates the elastic regime defined by Reuss and Voigt bounds. The fact that α ≈ 1 indicates a near
iso-stress state of the system at this condition.

Previous studies (Copley and Pask 1965a, 1965b, Paterson and Weaver 1970, Skrotzki
and Welch 1983, Meade and Jeanloz 1988, Foitzik et al 1989, Stretton et al 2001, Wenk 2002,
Yamazaki and Karato 2002) have suggested three soft slip systems in MgO crystal: {110}〈11̄0〉,
{111}〈11̄0〉 and {100}〈011〉. In our MgO deformation experiment, the polycrystalline sample
is sandwiched between {111} and {200} single crystals and therefore the large strain generated
by the D-DIA differential ram on the sequential samples is compensated by plastic flow of the
single crystals because of the soft slip systems. Consequently, the polycrystalline sample has
a near elastic behaviour with the weight parameter α right on the Reuss boundary (α = 1);
see figure 6. Nevertheless, when the polycrystalline sample experiences plastic deformation
(as the single crystal strain-compensator is replaced by a Ta rod) the weight parameter α goes
beyond the Reuss boundary (figure 7). Note that when plastic flow occurs there is a significant
change in the ratio of elastic lattice strains �ε(200) to �ε(111) in the polycrystalline MgO
sample, from �ε(200) > �ε(111) in figure 6 to �ε(200) < �ε(111) in figure 7. This can
give rise to a dramatic change of apparent elastic anisotropy if the same elastic modelling is
applied to both cases, causing the discrepancies between the results from Brillouin scattering
measurements (without plastic deformation) (Sinogeikin and Bass 1999) and x-ray diffractions
(with plastic deformation) at high pressures (Merkel et al 2002).

Plasticity in polycrystalline aggregates has increasingly drawn attention in high-pressure
x-ray studies. Early classic theories in modelling plastic deformation include the Taylor
model (homogeneous plastic strain, independent to grain orientation) (Taylor 1938) and the
Sachs model (homogeneous ratio of stress components among grains) (Sachs 1928). Similarly
to the elastic case, these simple assumptions are not usually maintained in real materials.
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Figure 7. Differential elastic lattice strains�ε(200) and�ε(111) of polycrystalline MgO (bottom)
and the derived weight parameter α for Reuss and Voigt bounds (top) at 4.5 GPa and 773 K when
significant plastic deformation in the aggregate is observed. Estimated experimental uncertainties
are indicated by either the bars attached to symbols or the size of the symbols. The shaded area
indicates the elastic regime defined by Reuss and Voigt bounds. The ratio of �ε(200)/�ε(111)
changes from >1 in the elastic case (figure 6) to <1. The solid line and dotted line indicate scaled
values for �ε(200) and �ε(111) based on the visco-plastic self-consistent modelling.

Extensions from these models have been made by for example Hill (1965), Berveiller and Zaoui
(1981), Molinari et al (1987), and Lebensohn and Tome (1993) for incremental linearization,
secant and tangent approach (also see a summary by Gilormini and Bréchet 1999). In recent
years, a visco-plastic self-consistent (VPSC) model has been developed and widely applied to
plastically deformed aggregates. This method averages the properties of polycrystal plasticity
by considering each grain as an inclusion in a homogeneous medium and rigorously accounting
for grain interactions directly. The VPSC model has become a very useful tool for analysing and
simulating the deformation history from the observed texture, and it was successfully applied
for modelling textures developed in minerals at high pressures (e.g. Wenk 1999, Merkel et al
2002). Very recently, Li et al (2004) demonstrated a sensible prediction of stress and elastic
lattice strain distribution in MgO under uniaxial compression using the VPSC simulation model
developed by (Clausen 1997, Clausen and Lorentzen 1997). This model assumes slip being
the dominant deformation mechanism and other mechanisms being negligible. Slip occurs
when the shear stress on the slip plane, and in the slip direction, reaches a value τCRSS, the
critical resolved shear stress. All active slip systems contribute to the overall strain and stress
of the aggregate with a weight of their own CRSS (critical resolved shear stress) ratio. Using
this model and assuming three active slip systems in MgO (i.e. {110}〈11̄0〉, {111}〈11̄0〉 and
{100}〈011〉), we simulated 2000 randomly oriented grains, and calculated the stress and strain
states for each individual grain and their contribution to the elastic lattice strain. CRSS ratios
between these three slip systems were tested for values of either 1 or 10 (a higher CRSS
ratio indicates a stiffer slip system). A CRSS ratio of 1:10:10 for {110}〈11̄0〉, {111}〈11̄0〉
and {100}〈011〉 slip systems yields the best fit between the modelled differential elastic lattice
strain ratio�ε(200)/�ε(111) and observed ones (figure 7). This is consistent with the previous
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experimental observation (Weaver and Paterson 1969, Paterson and Weaver 1970, Meade and
Jeanloz 1988, Foitzik et al 1989) that the {110}〈11̄0〉 is the softest slip system in MgO crystals.
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